
Version: US-UM-2.0

USER MANUAL

ESS Inverter

HISTORY

VERSION	ISSUED	COMMENTS
1.0	03-Feb23	First release
2.0	05-Sept23	Add Chapter PV Connection.

Preface

About This Manual

This manual describes the installation, connection, APP setting, commissioning and maintenance etc. of ESS inverter. Please first read the manual and related documents carefully before using the product and store it in a place where installation, operation and maintenance personnel can reach it at any time. The illustrations in this user manual are for reference only. This user manual is subject to change without prior notice. (Specific please in kind prevail.)

Target Group

ESS inverters must be installed by professional electrical engineers who have obtained relevant qualifications.

Scope

This manual is applicable to following inverters:

- 5K UL
- 6K UL
- 7.6K UL
- 10K UL

Conventions

The following safety instructions and general information are used within this user manual.

DANGER Indicates an imminently hazardous situation which, if not correct followed, will result in serious injury or death.		
MARNING WARNING	Indicates a potentially hazardous situation which, if not correctly followed, will result in serious injury or death.	
CAUTION	Indicates a potentially hazardous situation which, if not correctly followed, could result in moderate or minor injury.	
NOTICE .	Indicates a potentially hazardous situation which, if not correctly followed, could result in equipment failure to run, or property damage.	
NOTE	Call attention to important information, best practices and tips: supplement additional safety instructions for your better use of the Three phase hybrid inverter to reduce the waste of you resource.	

CONTENTS

Preface

About This Manual

Target Group

Scope

Conventions

1. Safety

- 1.1 Symbols Used
- 1.2 Safety Precaution

2. Product Introduction

- 2.1 Overview
- 2.2 Product Appearance

3. Installation

- 3.1 Packing List
- 3.2 Selecting the Mounting Location
- 3.3 Mounting

4. Electrical Connection

- 4.1 Grounding
- 4.2 GRID/BACKUP/GEN Connection
- 4.3 PV Connection
- 4.4 Battery Connection
- 4.5 Communication Connection

5. System Operation

- 5.1 Inverter Working Mode
- 5.2 Startup/Shutdown Procedure

6. Commissioning

- 6.1 Inspection
- 6.2 Commissioning Procedure

7. User Interface

- 7.1 LED/LCD
- 7.2 App Setting Guide

8. Maintenance

- 8.1 Routine Maintenance
- 8.2 Inverter Troubleshooting

9. Technical Specifications

1. Safety

Before using the inverter, please read all instructions and cautionary markings on the unit and in this manual. Put this manual to a place where you can take it easily.

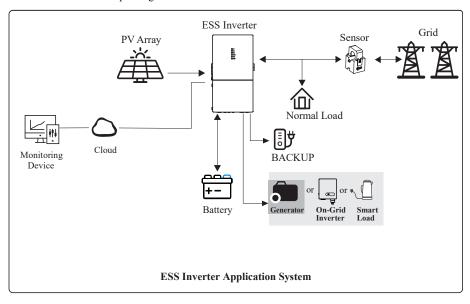
Our ESS inverter strictly conforms to related safety rules in design and test. Please follow the local laws and regulations during installation, operation and maintenance. Incorrect operation may cause injury or death to the operator or a third party, and damage to the inverter and other properties belonging to the operator or a third party.

1.1 Symbols Used

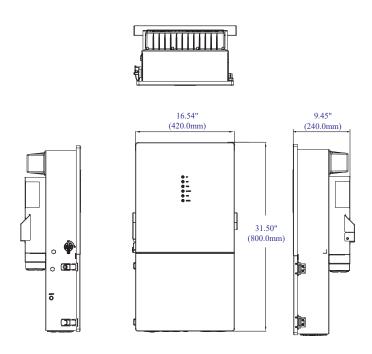
Safety Symbol	Description
A	Danger of high voltage and electric shock! Only qualified personnel may perform work on the inverter.
A Simins	Residual voltage exists after the inverter is powered off. It takes 5 minutes for system to discharge to a safe voltage.
	Danger of hot surface
20	Environmental Protection Use Period
Ţ <u>i</u>	Refer to the operating instructions
	Product should not be disposed as household waste.
	Grounding terminal

1.2 Safety Precaution

- Installation, maintenance and connection of inverters must be performed by qualified personnel, in compliance with local electrical standards, wiring rules and requirements of local power authorities and/ or companies.
- The temperature of some parts of the inverter may exceed 60°C during operation. Do not touch the inverter during operation to avoid being burnt.
- Ensure children are kept away from inverters.
- Don't open the front cover of the inverter. Apart from performing work at the wiring terminal (as
 instructed in this manual), touching or changing components without authorization may cause injury
 to people, damage to inverters and annulment of the warranty.
- Static electricity may damage electronic components. Appropriate methods must be adopted to prevent such damage to the inverter; otherwise the inverter may be damaged and the warranty annulled.
- Ensure the output voltage of the proposed PV array is lower than the maximum rated input voltage of the inverter; otherwise the inverter may be damaged and the warranty annulled.
- When exposed to sunlight, the PV array generates dangerous high DC voltage. Please operate according
 to our instructions, or it will result in danger to life.
- PV modules should have an IEC61730 class A rating.
- If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- Completely isolate the inverter before maintaining. Completely isolate the inverter should: turn off the PV switch and disconnect the PV terminal, battery terminal, and AC terminal
- After the inverter is powered off, the remaining electricity and heat may still cause electric shock and body burns. Do not touch parts of inverter for 10 minutes after disconnection from the power sources.
- Prohibit inserting or pulling the AC and DC terminals when the inverter is running.
- In Australia, the inverter internal switching does not maintain the neutral neutral continuity. And neutral
 integrity must be addressed by external connection arrangements.
- Don't connect ESS inverter in the following ways:
 The BACKUP Port should not be connected to the grid;
 A single PV panel string should not be connected to two or more inverters.


2. Product Introduction

2.1 Overview


ESS Inverter

The ESS inverter is a high-quality inverter which can convert solar energy to AC energy and store energy into battery. Typically, an ESS inverter system consists of PV array, ESS inverter, battery, loads and electricity sensor.

The energy generated by inverter can be preferentially supplied to its self consumption, stored in the battery for future use or fed into public grid.

2.2 Product Appearance

Inverter	dimensions
mverter	unnensions

Width	Height	Depth
16.54"	31.50"	9.45"
(420.0mm)	(800.0mm)	(240.0mm)

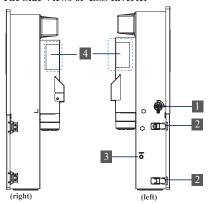
LED Details:

(4)	PV
_	

🖺 ват

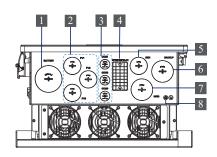
(I) GRID

BACKUP

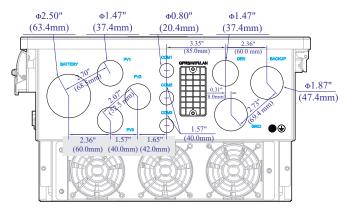

© COM

ALARM

Icon	Description
	PV
(1)	BAT
(1)	GRID
a	BACKUP
®	COM
(A)	ALARM

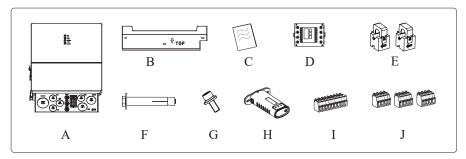

The External View of ESS Inverter

• The Side Views of ESS Inverter


No.	Description
1	PV switch
2	Toggle latch (for opening/closing the wire box cover)
3	ON/OFF Button
4	Handle Areas

• The Bottom View of ESS inverter

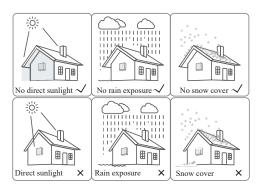
No.	Description
1	Battery connection port
2	PV connection ports
3	Communication connection ports
	(RS485, BMS, DRM, CT, DRY, RSD, PARA)
4	COM Port (GPRS/WIFI/LAN)
5	GEN connection port
6	BACKUP connection port
7	GRID connection port
8	External grounding point


• The Dimensions of Waterproof Holes

3. Installation

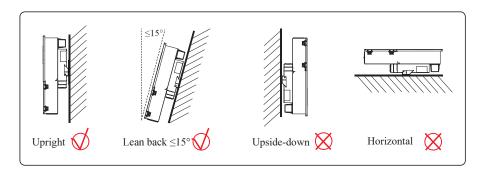
3.1 Packing List

After unpacking, please check the following packing list carefully for any damages or missing parts. If any damages or missing parts occur, contact the dealer for help.

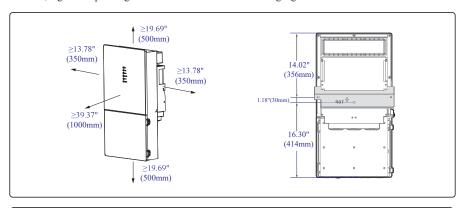


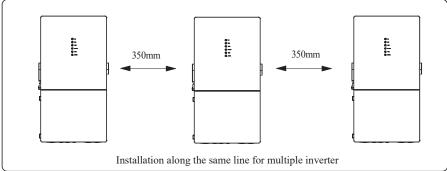
Number	Quantity	Description
A	1	Inverter
В	1	Mounting bracket
С	1	File package
D	1	Meter (Optional)
Е	2	СТ
F	3	M6 Expansion screws
G	1	M6 Security screw
Н	1	WIFI module
I	1	9-Pin terminal
J	3	4-Pin terminal

3.2 Selecting the Mounting Location


3.2.1 Installation Environment Requirements

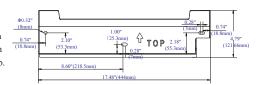
- a. With an IP65 protection rating, the inverter can be mounted indoors or outdoors.
- b. The mounting location must be inaccessible to unrelated personnel since the enclosure and heat sinks are extremely hot during operation.
- c. Do not install the inverter in areas containing highly flammable materials or gases.
- d. To ensure optimum operation and long service life, the ambient temperature must be below 50°C.
- e. The inverter must be mounted in a well-ventilated environment to ensure good heat dissipation.
- f. To ensure long service life, the inverter must not be exposed to direct solar irradiation, rain, or snow. It is recommended that the inverter be mounted in a sheltered place.
- g. The carrier where the inverter is mounted must be fire-proof. Do not mount the inverter on flammable building materials.
- h. Do not install the inverter in a rest area since it will cause noise during operation.
- i. The installation height should be reasonable, and please make sure it is easy to operate and view the display.
- j. Product label and warning symbols shall be clear to read after installation.
- k. Please avoid direct sunlight, rain exposure, snow cover.


3.2.2 Mounting Requirements

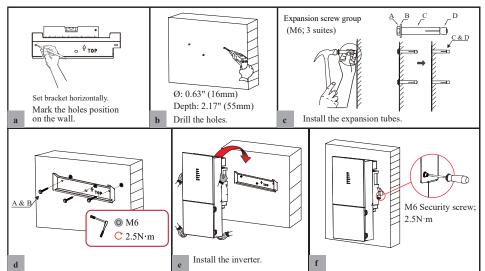

Mount the inverter vertically or at a maximum back tilt of 15°. The device can not be installed in a wrong mode and the connection area must point downward.

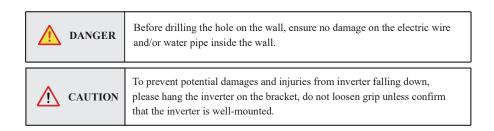
3.2.3 Installation Space Requirements

To ensure the inverter is normal and easy to operate, there are requirements on available spaces of the inverter, e.g. to keep enough clearance. Refer to the following figures.



3.3 Mounting

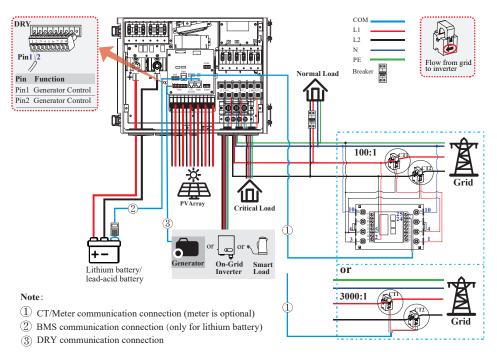

Before mounting the inverter, you have to prepare expansion screws and a security screw.


Step 1. Install the mounting bracket

- Use a level ruler to mark the position of the 3 holes on the wall. Refer to Figure a. And drill 3 holes, 16mm in diameter and 2.17" (55mm) in depth. Refer to Figure b.
- Knock the expansion screw kit into the hole together with a hammer. Refer to Figure c.
 Note: Do not remove the nut before performing this step.
- After tightening 2-3 buckles, the expansion bolts are tight and not loose, and then unscrew the bolts, spring washer, gasket. Refer to Figure c.
- 4. Install and fix the mounting bracket on the wall. Refer to Figure d.

Step 2. Install the inverter on the mounting bracket. Then lock the inverter using the security screw. Refer to Figure e, Figure f.

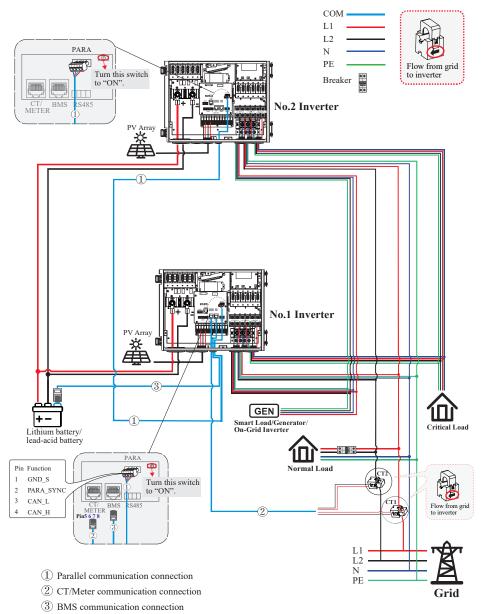
4. Electrical Connection


This chapter shows the detailed connections of ESS inverter. The following illustration only uses the hybrid inverter as an example.

ESS inverter system connection diagram:

Non-parallel connection mode

Split phase (120/240Vac)


2/3 Phase (120/208Vac) Connection diagram(US)

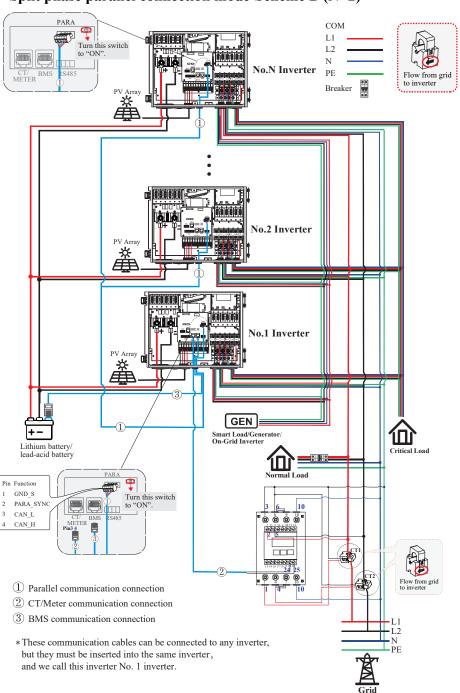
Ensure that the inverter and all cables to be installed have been completely powered off during the whole process of installation and connection. Otherwise, fatal injury could be caused by the high voltage.

Split Phase parallel connection mode-Scheme A (N=2)

^{*} These communication cables can be connected to any inverter,

but they must be inserted into the same inverter and we call this inverter No. 1 inverter.

Note:


- 1. BMS communication connection is only for lithium battery.
- 2. It is necessary to turn the matched resistance switch of No. 1 inverter and No. 2 inverter to "ON" in parallel connection mode.
- 3. With parallel connection mode, it is necessary to connect APP to one of the inverters and then go to Console > Hybrid Setting> Other > Parallel mode to enable parallel mode on APP.
- 4. About breakers:

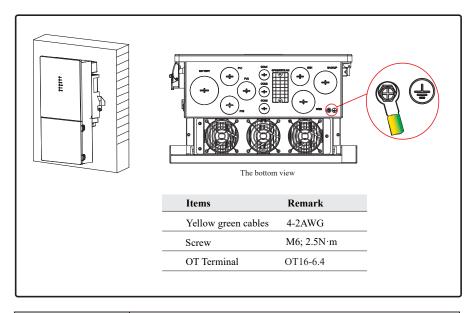
DC Breaker (Battery side): 300A/80V AC Breaker (GEN side): ≥60A/250V AC Breaker (Grid side): ≥60A/250V AC Breaker (Backup side): ≥60A/250V

Ensure that the inverter and all cables to be installed have been completely powered off during the whole process of installation and connection. Otherwise, fatal injury could be caused by the high voltage.

Split phase parallel connection mode-Scheme B (N>2)

Note:

- 1. BMS communication connection is only for lithium battery.
- 2. It is necessary to additionally purchase suitable CT and meter according to the specific requirements in parallel connection mode-Scheme B. Meter+CT Ratio is 100:1(optional).
- 3. It is necessary to turn the matched resistance switch of No. 1 inverter and No. N inverter to "ON" in parallel connection mode.
- 4. With parallel connection mode, it is necessary to connect APP to one of the inverters and then go to Console > Hybrid Setting> Other > Parallel mode to enable parallel mode on APP.
- 5. About breakers:


DC Breaker (Battery side): 300A/80V AC Breaker (GEN side): ≥60A/250V AC Breaker (Grid side): ≥60A/250V AC Breaker (Backup side): ≥60A/250V

Ensure that the inverter and all cables to be installed have been completely powered off during the whole process of installation and connection. Otherwise, fatal injury could be caused by the high voltage.

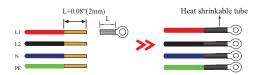
4.1 Grounding

A protective earth (PE) terminal is equipped at the side of the inverter. Please be sure to connect this PE terminal to the PE bar for reliable grounding. AWG 2 or 4 yellow green cables are recommended.

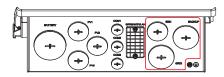
⚠ WARNING	The inverter must be grounded; otherwise, there may be an electric shock risk.
A CAUTION	If the positive pole or negative pole of the PV array is required to be grounded, then the inverter output (to AC grid) must be isolated by transformer in accordance with IEC62109-1, -2 standards.

4.2 GRID/BACKUP/GEN Connection

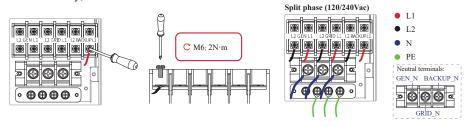
This section explains the requirements and procedures of PV connection. Read carefully before connecting.


Before connecting the GRID/BACKUP/GEN terminal, ensure that both the AC terminal and the DC terminal are powered off and the PV switch is OFF.

Otherwise there is a risk of high voltage shock.


Step1. Prepare the proper cable we recommended as table below, and strip an approprate length of the cable insulation.

It is recommended to use outdoor dedicated cables.



Step2. Thread the wires into wire box through corresponding GEN/GRID/BACKUP ports.

Step3. According to the label on terminal blocks, fit wires' connectors in and tighten terminal screws. Finally, make sure the connection is secure.

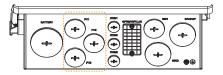
4.3 PV Connection

This section explains the requirements and procedures of PV connection. Read carefully before connecting.

1.Photovoltaic arrays exposed to sunlight will generate dangerous voltages!
2.Before connecting the PV terminal, ensure that both the AC terminal and the DC terminal are powered off and the PV switch is OFF. Otherwise there is a risk of high voltage shock.

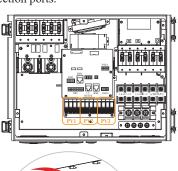
Step1. Prepare the proper cable we recommended, and strip approx. 15 mm of the cable insulation.

It is recommended to use dedicated PV cable.



Step2. Inspection before connection.

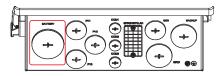
- Check correct polarity of wire connection from PV modules and PV input connectors.
- The test voltage cannot exceed 600V.
- Ensure that the PV switch is OFF.


Step3. Thread the wires into wire box through PV connection ports.

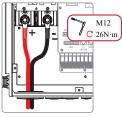
Step4. Open the switches of PV input connector. Insert the stripped cable into the PV input connector. When doing so, ensure that the stripped cable and the PV input connector are of the same polarity. Finally, close switches and ensure the wires are tightly fixed.

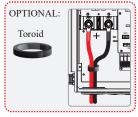
4.4 Battery Connection

This section explains the requirements and procedures of battery connection. Read carefully before connecting.


Before connecting the battery terminal, ensure that both the AC terminal and the DC terminal are powered off and the PV switch is OFF. Otherwise there is a risk of high voltage shock.

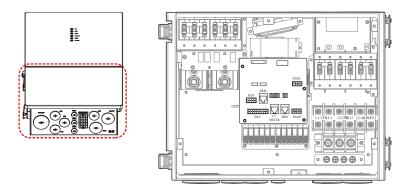
Step1. Prepare the proper cable we recommended, and strip an approprate length of the cable insulation.


It is recommended that the battery cable be less than or equal to 3m.



Step2. Thread the wires into wire box through Battery connection port.

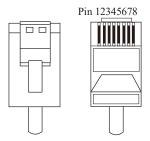
Step2. Insert the wires into battery terminals. A toroid is optional for our inverter to avoid interference.



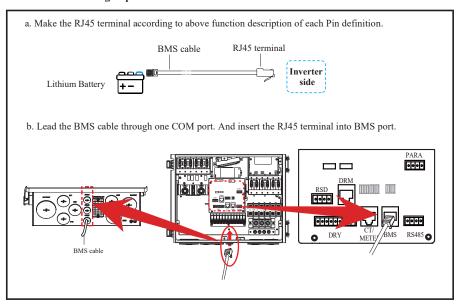
WARNING

Polarity reverse will damage the inverter!

4.5 Communication Connection


There are communication interfaces in the communication port on the bottom of the inverter as show below:

Interface		Descriptions
PARA		4-Pin interface for parallel communication
111111		A matched resistance switch for parallel communication
RS485		4-Pin interface for RS485 communication
DRM		Demand response mode for Australia application
CT/ME	ETER	For CT/Meter communication or Grid current sense
BMS		Lithium battery communication interface
	GEN	Generator control
9-Pin	NTC	Temperature sensor terminal of lead-acid battery
	RMO	Remote off control
DRY DI/DO control		DI/DO control
RSD		RSD control interface
GPRS/WIFI/LAN		For GPRS/WIFI/LAN communication


4.5.1 BMS Connection (Only for Lithium Battery)

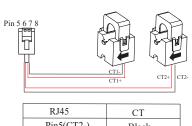
RJ45 Terminal Configuration of Battery Communication (BMS)

PIN	1	2	3	4
Function Description	RS485_ A	RS485_B	/	CAN_H
PIN	5	6	7	8
Function Description	CAN_L	/	/	/

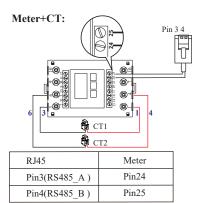
This manual describes the cable sequence of the inverter. For details about the cable sequence of the battery, see the manual of the battery you used.

4.5.2 CT/Meter Connection

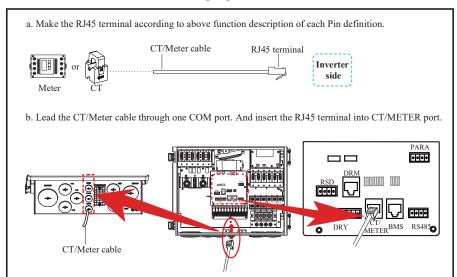
A CT/Meter is applied to monitor electricity usage of all loads.


• RJ45 Terminal Configuration for CT and Meter Communication

PIN	1	2	3	4	5	6	7	8
Function Description	/	/	RS485_ A	RS485_B	CT2-	CT2+	CT1+	CT1-

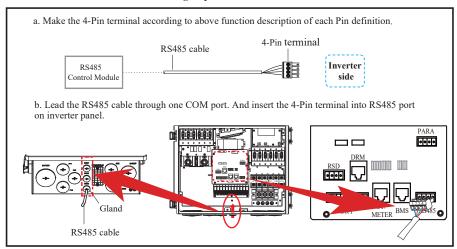


• Cable connection overview


CT:

RJ45	CT
Pin5(CT2-)	Black
Pin6(CT2+)	Red
Pin7(CT1+)	Red
Pin8(CT1-)	Black

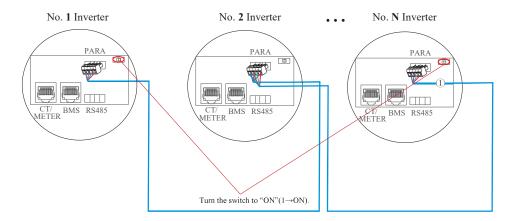
• Connect CT/Meter. Refer to the following steps:


4.5.3 RS485 Connection

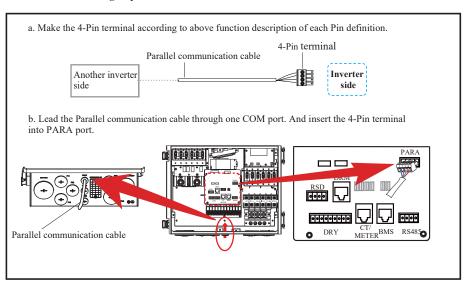
4-Pin Terminal Configuration of RS485 Communication

PIN	1	2	3	4
Function Description	RS485_A	RS485_B	PE	PE

Connect RS485. Refer to the following steps:


4.5.4 Parallel Communication Connection

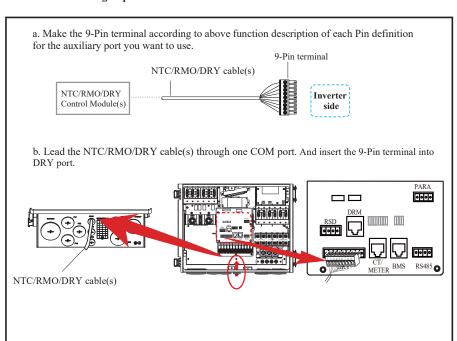
4-Pin Terminal Configuration of parallel Communication


PIN	1	2	3	4
Function Description	GND_S	PARA_SYNC	CAN_L	CAN_H

Parallel communication cable connection overview

It is necessary to turn the matched resistance switch of No. 1 inverter and No. N inverter to "ON" in parallel connection mode.

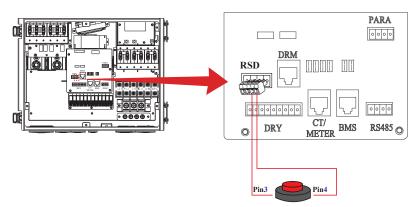
No. 1 Inverter	No. 2 Inverter	•••	No. N Inverter
Pin4(CAN_H)	Pin4(CAN_H)		Pin4(CAN_H)
Pin3(CAN_L)	Pin3(CAN_L)		Pin3(CAN_L)
Pin2(PARA_SYNC)	Pin2(PARA_SYNC)		Pin2(PARA_SYNC)
Pin1(GND_S)	Pin1(GND_S)		Pin1(GND_S)


4.5.5 NTC/RMO/DRY Connection(s)

9-Pin Terminal Configuration of Auxiliary Communication

Pin 123456789

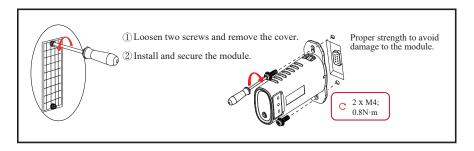
PIN	Function Description
1	GEN Control
2	GEN Control
3	NC1 (Normal Close)
4	NO2 (Normal Open)
5	N2
6	NC2 (Normal Close)
7	REMO OFF
8	GND S (NTC BAT)
9	NTC BAT+


4.5.6 RSD Connection(s)

4-Pin Terminal Configuration of RSD

PIN	1	2	3	4	
Function Description	+12V	GND	Emergency Stop Signal Button		

Emergency Stop Signal:


Normally Open Rapid Shutdown Signal Button

4.5.7 WIFI Module Connection

For details, please refer to the corresponding Module Installation Guide in the packing.

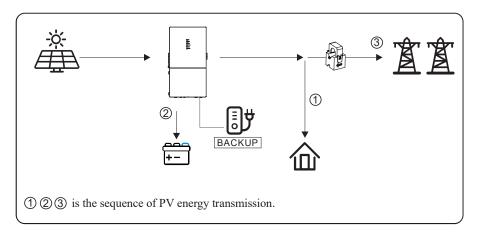
The appearance of module may be slightly different. The figure shown here is only for illustration.

5. System Operation

5.1 Inverter Working Mode

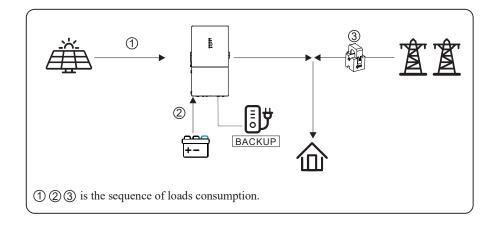
The inverter supports several different working modes.

5.1.1 Self Used Mode

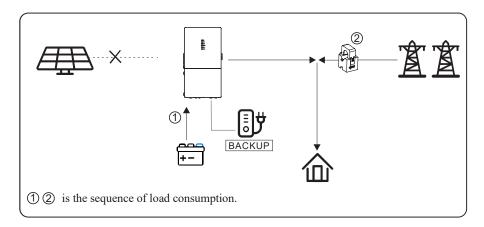

Go to the "Hybrid work mode" menu, and select the "Self used mode".

Under Self Used mode, the priority of PV energy consumption will be Load > Battery > Grid, that means the energy produced by PV gives priority to powering local loads, the excess energy is used to charge the battery and the remaining energy is fed into the grid.

This is the default mode to increase self-consumption rate. There are several situations of self-used working mode based on PV energy.


a) Wealthy PV Energy

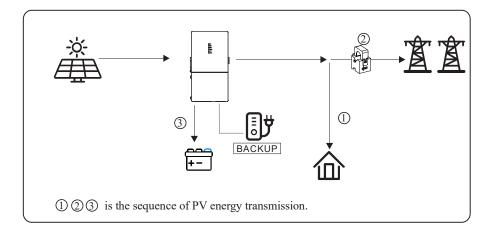
When PV energy is wealthy, the PV energy will be first consumed by loads, the excess energy will be used to charge the battery and then the remaining energy will be fed into the grid.


b) Limited PV Energy

When the PV energy is not enough to cover all consumption, the PV energy will be entirely used by loads, and the insufficient part will be supplied by battery. Then still insufficient parts will be supplied by grid.

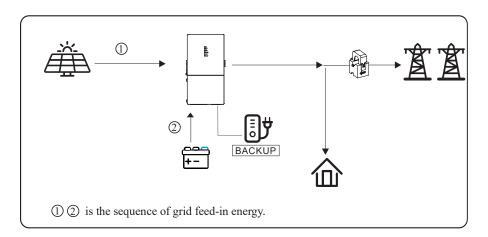
c) No PV Input

The inverter will first discharge the battery energy for home load consuming when no PV input(such as in the evening or some cloudy or rainy days). If the demand is not met, the loads will consume grid energy.

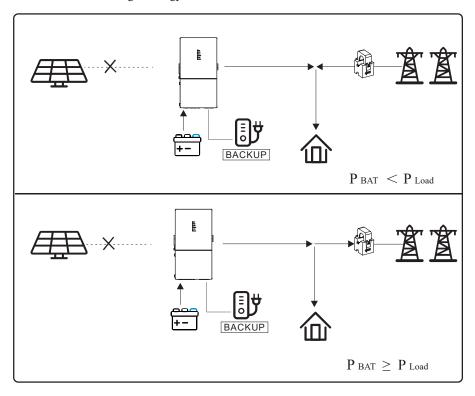

5.1.2 Feed-in Priority Mode

Go to the "Hybrid work mode" menu, and select the "Feed-in priority mode".

Under this mode, the priority of PV energy consumption will be Load > Grid > Battery, that means the energy produced by PV gives priority to powering local loads, the excess energy is fed into the grid, and the remaining energy is used to charge the battery.


a) Wealthy PV Energy

When PV energy is wealthy, the PV energy will be first consumed by loads. If there is excess PV power, the power will be fed into grid. If there is still PV energy left after load consuming and grid feeding, then the remaining PV power will be used to charge the battery.


b) Limited PV Energy

When PV energy is limited and can not meet the feed-in grid power, the battery will discharge to meet it.

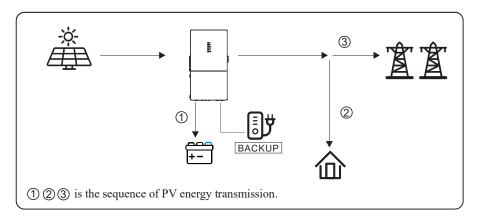
c) No PV Input

The inverter will first discharge the battery energy for home load consuming when no PV input (such as in the evening or some cloudy or rainy days). If the demand is not met, the loads will consume the grid energy.

5.1.3 Back-up Mode

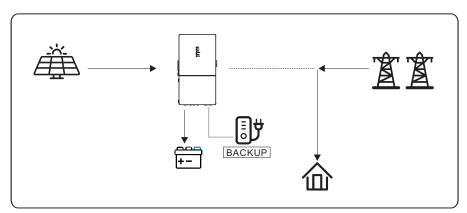
Go to the "Hybrid work mode" menu, and select the "Back-up Mode".

Under this mode, the priority of PV energy consumption will be Battery > Load > Grid.


This mode aims at charging the battery quickly, and at the same time, you can choose whether to allow AC to charge the battery.

Forbid AC charging

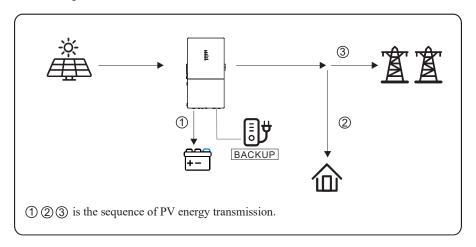
In this mode, the battery can be charged only with PV power, and the charging power varies with PV power.


a) Wealthy PV power

When PV energy is wealthy, PV charges the battery first, then meets the load, and the rest is fed into the grid.

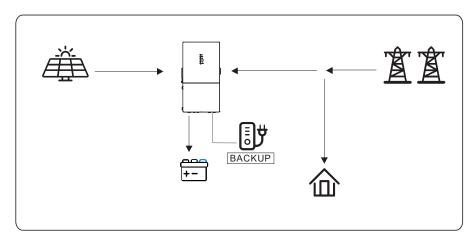
b) Limited PV power

When PV energy is limited, PV gives priority to charging the battery, and the grid directly meets the load demand.



Allow AC charging

In this situation, the battery can be charged both with PV and AC.

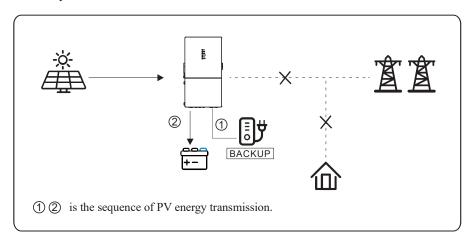

a) Wealthy PV power

When PV energy is wealthy, PV charges the battery first, then meets the loads, and the rest is fed into the grid.

b) Limited PV power

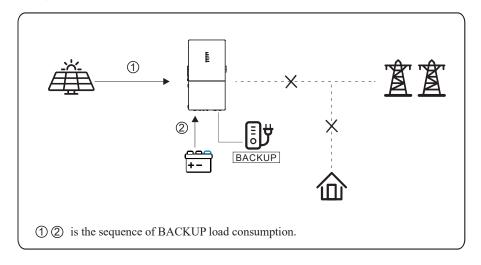
When the PV energy is not enough to charge the battery, the grid energy will charge the battery as supplement. Meanwhile, the grid energy is consumed by loads.

5.1.4 Off Grid Mode


When the power grid is cut off, the system automatically switches to Off Grid mode.

Under off-grid mode, only critical loads are supplied to ensure that important loads continue to work without power failure.

Under this mode, the inverter can't work without the battery.


a) Wealthy PV power

When PV energy is wealthy, the PV power will be first consumed by critical load, then charge the battery.

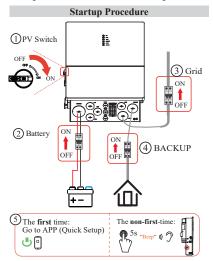
b) Limited PV power

When PV energy is limited, BACKUP loads are first powered by PV and then supplemented by battery.

NOTICE

- Under this mode, please complete the output voltage and frequency settings.
- It is better to choose the battery capacity greater than 100Ah to ensure BACKUP function works normally.
- If BACKUP output loads are inductive or capacitive loads, to make sure the stability and reliability of system, it is recommended to configure the power of these loads to be within 50% of BACKUP output power range.

5.2 Startup/Shutdown Procedure

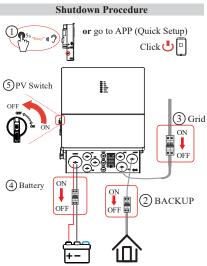

5.2.1 Startup Procedure

Before starting up, check whether the installation is secure and strong enough, and whether the system has been well grounded. Then make sure the connections of AC, battery, PV etc. are correct, and confirm the parameters and configurations conform to relevant requirements.

AC Frequency 50/60Hz	PV Voltage	70~540V
Battery Voltage 40~64V	Grid AC Voltage	120/240V(Split phase) /208V(2/3 phase)

Make sure all the above aspects are right, then follow the procedures below to start up the inverter.

- 1) Power on the PV.
- 2) Power on the battery.
- 3) Power on the AC.
- 4) Power on the BACKUP.
- 5) Connect the cell phone App via Bluetooth. And click the Power ON in the App for the first time. Refer to Section 7.2 for details. Or you can hold the ON/OFF button on the side of the inverter for 5s in this step when performing subsequent startup.



5.2.2 Shutdown Procedure

When it is necessary to shut down the running system, please follow the procedures below:

1) Connect the cell phone App via Bluetooth. And click the Power OFF on the App. Refer to Section 7.2 for details. Or you can hold the ON/OFF button on the side of the inverter for 5 seconds in this step when performing subsequent shutdown.

- 3) Power off the BACKUP.
- 4) Power off the AC.
- 5) Power off the Battery.
- 6) Power off the PV.
- 7) To disconnect the inverter cables, please wait at least 5 minutes before touching them.

ESS Inverter User Manual 41

6. Commissioning

Full commissioning of the inverter system is required as this can essentially protect the system from fire, electric shock or other damages or injuries.

6.1 Inspection

Before commissioning, the operator or installer (qualified personnel) must inspect the system carefully and make sure:

- 1) The system is firmly and correctly installed according to this Manual, and there is an enough spaces for operation, maintenance and ventilation.
- 2) All the terminals and cables are in good conditions, free of any damages.
- 3) No items are left on the inverter or in the required gap.
- 4) The PV, battery pack can working normally, and grid is normal.

6.2 Commissioning Procedure

After inspection and making sure status is right, then start the commissioning of the system.

- 1) Power on the system by referring to the Startup section 5.2.1.
- 2) Setting the parameters on the App as needed.
- 3) Finish the commissioning.

7. User Interface

7.1 LED/LCD

7.1.1 LED Introduction

This section describes LED indicators, which include PV, BAT, GRID, BACKUP, COM, ALARM indicators.

The table below explains the status and description of all indicators. Please read it carefully.

(B) PV (D) BAT (E) GRID (E) BACKUP (E) COM (A) ALARM	PO SE
LED	LED+LCD

LED Indicator	Status	Description	
	On	PV input is normal.	
PV	Blink	PV input is abnormal.	
	Off	PV is unavailable.	
	On	Battery is charging.	
BAT	Blink	Battery is discharging. Battery is abnormal.	
	Off	Battery is unavailable.	
	On	GRID is available and normal.	
GRID	Blink	GRID is available and abnormal.	
	Off	GRID is unavailable.	
COM	Bink	Data are communicating.	
COM	Off	No data transmission.	
	On	BACKUP power is available.	
BACKUP	Blink	BACKUP output is abnormal.	
	Off	BACKUP power is unavailable.	
AT ADM	On	Fault has occurred and inverter shuts down.	
ALARM	Blink	Alarms have occurred but inverter doesn't shut down.	
	Off	No fault.	

Details	Code	PV LED	Grid LED	BAT :	BACKUF LED	COM LED	ALARM LED
PV normal		•	©	0	0	0	0
No PV		0	0	0	0	0	0
PV over voltage	В0						
PV under voltage	B4						
PV irradiation weak	В5	*	0	0	0	0	0
PV string reverse	В7		•	•		•	O
PV string abnormal	В3						
On grid Bypass output		0	•	0	0	0	0
Grid over voltage	A0						
Grid under voltage	A1						
Grid absent	A2						
Grid over frequency	A3	0	•	0	0	0	\circ
Grid under frequency	A4			•	•		0
Grid abnormal	A6						
Grid over mean voltage	A7						
Neutral live wire reversed	A8						
Battery in charge		0	\bigcirc	•	0	0	\circ
Battery absent	D1	0	0	\circ	\bigcirc	0	\circ
Battery in discharge		0	\bigcirc	$\star\star$	\bigcirc	\bigcirc	\circ
Battery under voltage	D3						
Battery over voltage	D2						
Battery discharge over current	D4	(i)	(_		(\circ
Battery over temperature	D5	0	0	*	0	0	O
Battery under temperature	D6						
Communication loss (Inverter - BMS)	D8						
BACKUP output active		0	0	0	•	0	0
BACKUP output inactive		0	0	0	\circ	0	0
BACKUP short circuit	DB						
BACKUP over load	DC		6			6	
BACKUP output voltage abnormal BACKUP over dc-bias voltage	D7 CP	0	0	0	*	0	0

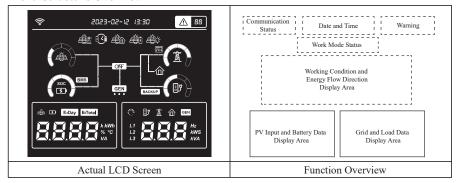
Details	Code	PV LED	Grid LED	BAT LED	BACKUI LED	P COM LED	ALARM LED
RS485/DB9/BLE/USB		0	0	0	0	*	0
Inverter over temperature	C5						
Fan abnormal	C8						
Inverter in power limit state	CL	0	(0	((i)	
Data logger lost	СН	0	0	0	0	0	×
Meter lost	CJ						
Remote off	CN						
PV insulation abnorma	B1						
Leakage current abnormal	B2						
Internal power supply abnormal	C0						
Inverter over dc-bias current	C2						
Inverter relay abnormal	СЗ						
GFCI abnormal	C6						
System type error	C7						
Unbalance Dc-link voltage	С9						
Dc-link over voltage	CA						_
Internal communication error	СВ	0	0	0	0	0	
Internal communication loss(E-M)	D9						
Internal communication loss(M-D)	DA						
Software incompatibility	CC						
Internal storage error	CD						
Data inconsistency	CE						
Inverter abnormal	CF						
Boost abnormal	CG						
Dc-dc abnormal	CU						

Remark:

Light on

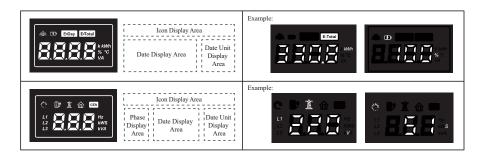
Light off

Keep original status


Blink 1s and off 1s

★ Blink 2s and off 2s

7.1.2 LCD Introduction


LCD screen is optional for this series of inverters. If you choose a LCD screen, the following introduction will help you understand the function of each icon displayed.

Menu Structure Overview

Icon Introduction-1

Icon Introduction-2

con introduction 2				
	The PV icon represents the power of PV.			
GD	The Battery icon represents the current battery charge percentage or the voltage of battery			
E-Day	The E-Today icon represents the electricity energy generated today.			
E-Total	The E-Total icon represents the electricity energy generated in total.			
\$18 	When the Loading icon is on, it represents that the device is starting and the start timer countdown is displayed. The icon lights up a cluster of lights every second, until all lights are on, and then repeat the whole process again.			
₿ ÿ	The Back-Up icon represents the relevant power, frequency or voltage of Back-Up.			
Â	The Grid icon represents the relevant power, frequency or voltage of the Grid.			
命	The Smart Load icon represents the power consumption.			
GEN	The GEN icon represents the voltage or power of generator.			
L1 L2 L3	The L1 icon represents L1 phase of Grid/Backup/Generator. The L2 icon represents L2 phase of Grid/Backup/Generator. The L3 icon represents L3 phase of Grid/Backup/Generator.			
8888	These two areas will display corresponding data of each lit icon mentioned above.			
8.8.8 Hrs HV2				

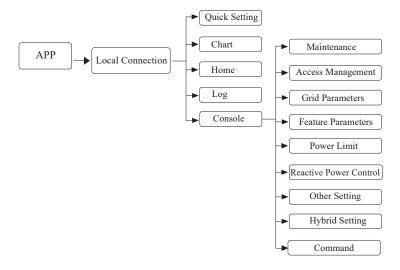
Table 7-1 Icon Status Description

tuble / 1 le	on Status Des	scription	Icon Status Description
Icon	Name	Light	Description
344		ON	Any PV voltage exists (it should be higer than the Min. PV Startup Voltage).
	PV	OFF	PV Voltage is lower than the Min. PV Startup Voltage.
1√∆- 1		ON	Grid Voltage and frequency are normal.
A	Grid	OFF	Grid overvoltage / undervoltage / overfrequency / underfrequency occurs.
SOC	_	ON	Bat. Voltage is higher than the Rated Min. Bat Voltage.
	Battery	OFF	Bat. Voltage is lower than the Rated Min. Bat Voltage.
⊕#	Back-Up	ON	Backup relay is on.
∄ ÿ	Load	OFF	Backup relay is off.
		ON	Battery is set to BMS Type and its communication is normal.
ВМЅ	BMS	Blink	BMS communiation is abnormal.(The icon indicator on for one second, off for one second)
DIMO		OFF	Battery is not set to BMS Type.
		OH	2. Battery voltage is lower than Rated Min. Voltage
BACKUP	BACKUP	ON/OFF	Flash with Back-Up Load icon simultaneously
		ON	Power Limit is set to CT or Meter in APP, and the CT/Meter communication is normal, the Grid side is running well.
	Meter/CT	Blink	When Meter/CT communication is lost, Meter/CT icon on for one second, off for one second)
		OFF	1. Power Limit is not set to CT or Meter.
		OFF	2. The voltage or frequency of grid side is abnormal.
命	Smart Load	ON/OFF	Flash with Grid icon simultaneously.
			1. Backup relay is on.
ON	ON	ON	2. The inverter works under On-Grid mode.
			3. The inverter works under Off-Grid mode.
OFF	OFF	OFF	Non-on working mode.
GEN	Generator / Smart Load /	From left to	right, when the three dots light up, each represents different meanings.
•••	Inverter	When GEN	communication is lost, GEN icon will go off.
GEN	GEN	ON	Generator relay is on.
O.L.	GEN	OFF	Generator replay is off.
GEN	Generator	ON	In APP, the "Gen port" parameters set to "Generator Input" and the generator relay is powered on.
•	dot	OFF	APP parameter set to Non 'Genetator Input'.
GEN	Smart Load	ON	In APP, the "Gen port" parameters set to "Smart Load Output" and the generator relay is powered on.
•	dot	OFF	APP parameter set to Non 'Smart Load Output'.
GEN	Inverter dot	ON	In APP, the "Gen port" parameters set to "Invertre Input" and the generator relay is powered on.
•	100	OFF	APP parameter set to Non 'Inverter Input'.
	1		<u> </u>

7.2 App Setting Guide

7.2.1 Download App for Local Setting

- Scan the QR code on the inverter to download the App SolarHope.
- Download the APP from the App Store or Google Play.


1. The App SolarHope is only for local settings.

Detailed information about remote monitoring, please refer to corresponding WIFI User Manual.

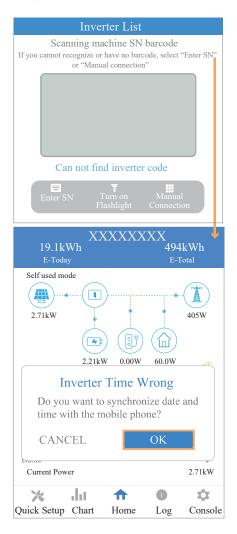
2. The App should access some permissions such as the device's location. You need to grant all access rights in all pop-up windows when installing the App or setting your phone.

7.2.2 App Architecture

Local connection: APP read data from inverter through Bluetooth connection with Modbus protocol to display and configure inverter parameter.

7.2.3 Local Setting

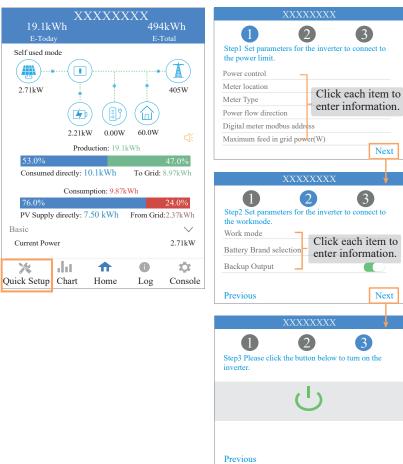

■ Access Permission


Before using the local setting, the APP should access some permissions. (You can allow them when you install the APP or grant permissions in your own phone setting.) When the APP asks for permission, please click Allow.

■ Connect Inverter

Firstly, open the Bluetooth on your own phone, then open the APP.

Click Bluetooth Connection to enter scanning interface. This page will list the inverters which you can connect or you have connected. (As shown below) click the inverter's name to connect it.


• Quick Setting

➤ Go to Quick Setup page.

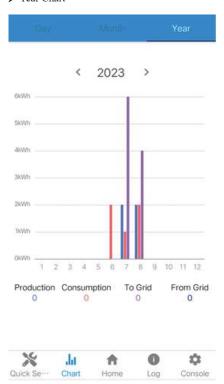
Step 1 Set parameters for the inverter to connect to the power limit. Click each item to enter the information, then click Next.

Step 2 Set parameters for the invetre to connect to the workmode. Click each item to enter the information, then click Next. You can click Previous to go back to the previous page.

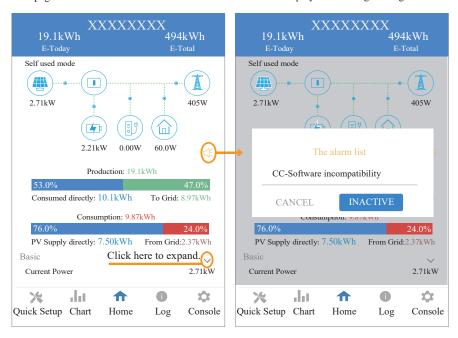
Step 3 Click the button below to turn on the inveter. You can click Previous to go back to the previous page.

• APP Power Chart

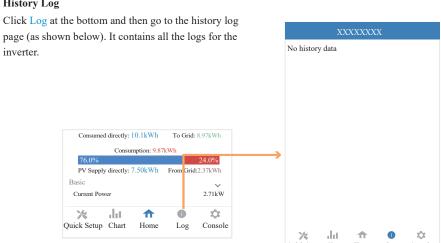
The power chart is showed by Day, Month and Year in our APP. Data curves in the following figures are only for illustration.


➤ Day Chart

➤ Month Chart



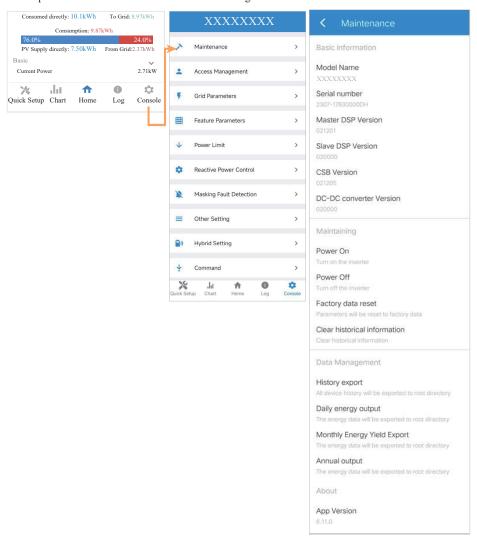
➤ Year Chart



• Local Setting Homepage

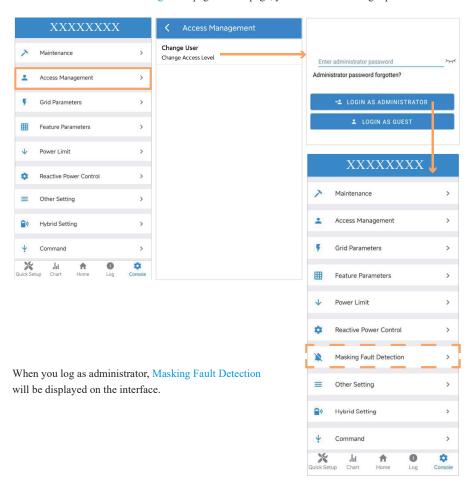
This page shows the basic information of inverter. Click 4 to display the warning message.

• History Log

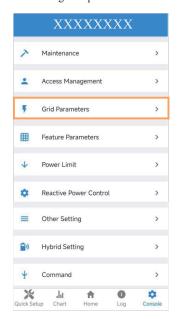


• Console

> Maintenance


Go to Console page. And click Maintenance

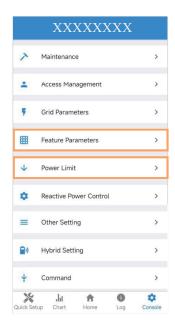
In this page, you can view the basic information like some version information, do some maintaining operations like turn off/on the inverter and manage data.

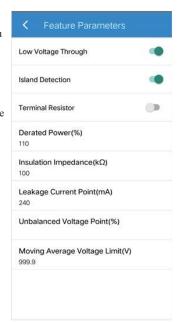

> Access Management

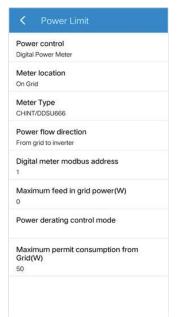

Go to Console > Access Management page. In this page, you can switch the login permission.

> Grid Parameters

Go to Console > Grid Parameters page. In this page, you can set or change the parameters of Grid side, as shown in the figure.

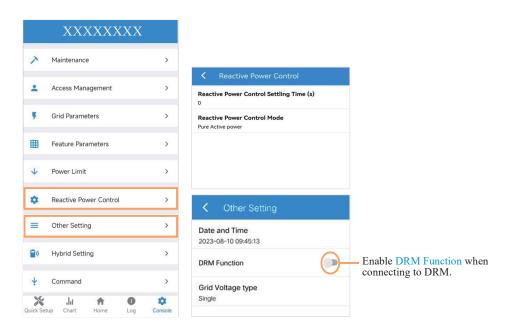



> Feature Parameters


Go to Console > Feature Parameters page. In this page, you can set or change the feature parameters, as shown in the figure.

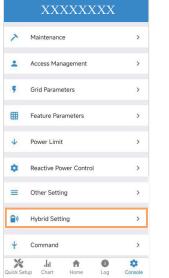
≻ Power Limit

Go to Console > Power Limit page. In this page, you can set or change the parameters of power limit, as shown in the figure.



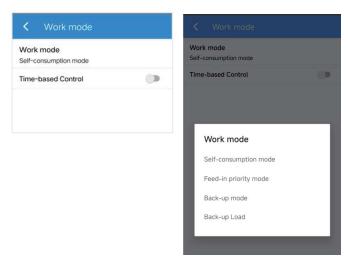
> Reactive Power Control

Go to Console > Reactive Power Control page. In this page, you can set or change the Reactive Power Control parameters.

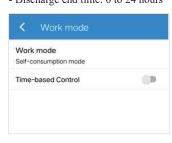

> Other Setting

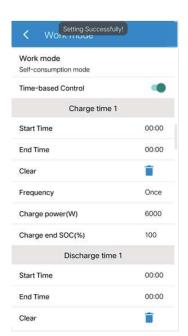
Go to Console > Other Setting page. In this page, you can set other setting parameters.

➤ Hybrid Setting


Go to Console > Hybrid Setting page. In this page, you can set contents about work mode, battery, backup Load, generator and other. The setting interfaces are listed one by one.

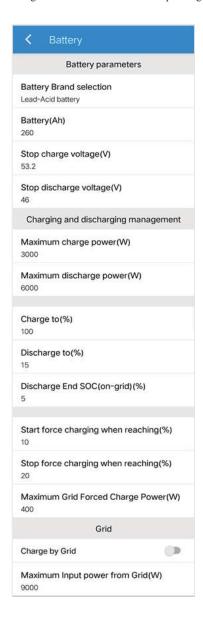
1 Work mode

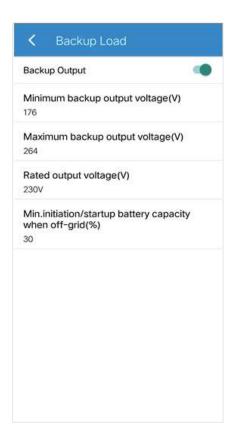

In Work mode page, there are four work modes are available.



In Work mode page, you can also find "Time-based Control" function. This function is designed to control the time setting of charging and discharging the inverter. You can set the following parameters based on your requirements:

- Charge and discharge frequency: one time or daily


Charging start time: 0 to 24 hours
Charging end time: 0 to 24 hours
Discharge start time: 0 to 24 hours
Discharge end time: 0 to 24 hours


2 Battery

In Battery page, information including battery parameters, charging and discharging management and grid will be listed. Enter corresponding information if necessary.

3 Backup Load

In Backup Load page, if enabling Backup Output, you can set parameters including the range of backup output voltage and Min. initiation/startup battery capacity when off-grid.

■ Smart Load Output Mode Introduction

1. Go to Hybrid Setting > Generator page and choose Smart Load Output as below.

Smart Load Output Mode: Under this mode, the GEN Port works as an output port for the Smart Load connected to the GEN terminal.

2. All parameters have been set by default.

The default values of Smart Load Output are as below:

Minimum PV power of Smart Load On(W): Minimum PV input power above which the Smart Load will switch on. Also, the battery SOC should exceed the setting value (%) simultaneously and then the Smart Load will switch on.

Battery SOC of Smart Load On (%): Battery SOC above which the Smart Load will switch on. Also, the PV input power should exceed the setting value (Power) simultaneously and then the Smart Load will switch on.

Battery SOC of Smart Load Off (%): Battery SOC below which the Smart Load will switch off.

Always On with Grid: When click "Always On with Grid" the Smart Load will switch on when the grid is present.

3. If the values are set as described above, the situations are as follows:

When Always On with Grid is ON, if the grid is present, the Smart Load will be ON all the time. It is not affected by the change of above parameters. If the grid is not present, the Smart Load will be OFF. When Always On with Grid is OFF, if the PV power \geq 500W and the Battery SOC \geq 100%, the GEN Port function will be enabled and the Smart Load will be ON. If the PV power < 500W or the Battery SOC < 80%, the GEN Port function will be disabled and the Smart Load will be OFF.

■ Generator Input Mode Introduction

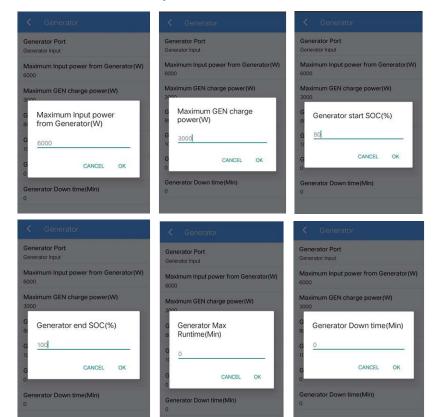
1. Go to Hybrid Setting > Generator > Generator Port page and choose Generator Input as below. Note: You need to shut down the Inverter to set the Generator Input Mode.

Generator Input Mode: Under this mode, the GEN Port works as an input port from the generator while under Off-Grid condition. The Generator Input can charge the battery or take the backup load.

2. All parameters have been set by default.

Maximum Input power from Generator (W): Maximum input power from generator. Forbid the generator power larger than the setting value (W).

Maximum GEN charger power (W): Maximum battery charge power from generator.


Generator start SOC (%): Battery SOC below which the generator starts to charge the battery. Meanwhile, the generator running time should not exceed the maximum runtime setting value (Hour).

Generator end SOC (%): Battery SOC above which the generator stops charging the battery.

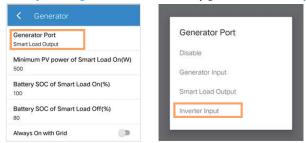
Generator Max Runtime (Min): The generator maximum running time in minutes. When the generator running time is larger than the setting value, the Gen Port will cut off. When the runtime be set to 0 minutes, means the generator will run all the time.

Generator Down time (Min): The Generator Down time in minutes after inverter stop working. (Max. Generator Down time: 10 mins)

Note: The total generator running time equal to "Generator Max Runtime (Hour)" plus "Generator Down time (Min)".

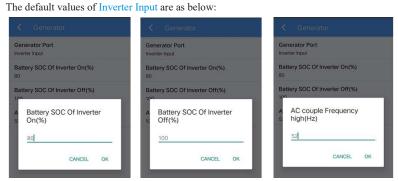
The default values of Generator Input are as below:

3. If the values are set as described above, the situations are as follows:


Under Off-Grid mode, when the Battery $SOC \le 80\%$ and the Runtime \le Generator Max Runtime (Hour), the GEN Port function will be enabled and the Generator Input will be ON. When the Battery $SOC \ge 100\%$ or the Runtime is over Generator Max Runtime (Hour), the GEN Port function will be disabled and the Generator Input will be OFF.

Under On-Grid mode, the GEN Port function will be disabled and the Generator Input will be OFF. Note:

- 1. If Generator and Grid are normal, preferably powered by Grid power.
- 2. Generator Max Runtime (Hour) = 24, means generator can run all the time.


■ Inverter Input Mode Introduction

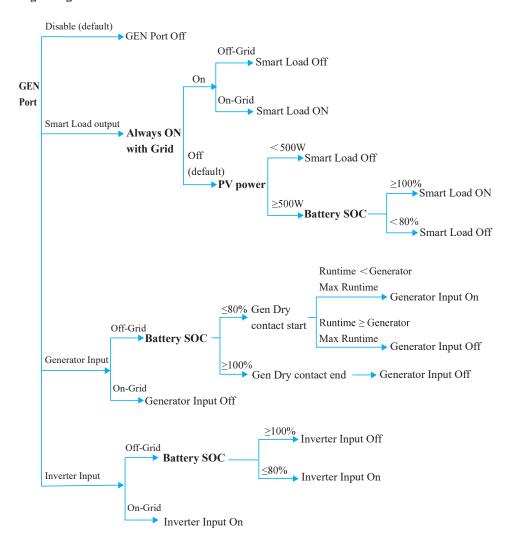
1. Go to Hybrid Setting > Generator > Generator Port page and choose Inverter Input.

Inverter Input Mode: Under this mode, the GEN Port works as an input port from other grid-tied inverter whose rated power should be less than the hybrid inverter. The grid-tied inverter should also support derating output power according to the output frequency.

2. All parameters have been set by default.

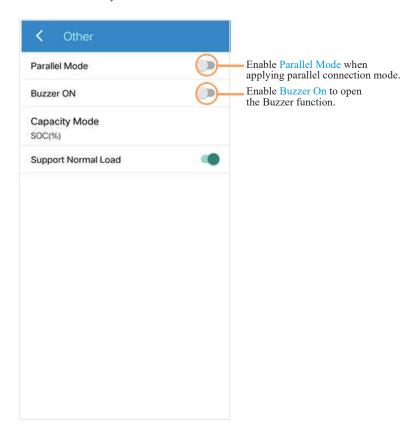
Battery SOC Of Inverter On (V): Battery SOC below which the Inverter powers on and starts charging the battery.

Battery SOC Of Inverter Off (V): Battery SOC above which the Inverter powers off and stops charging the battery.


AC couple Frequency high (Hz): This parameter is used to limit the output power of grid-tied inverter when the hybrid inverter works under off-grid mode. The highest output frequency of the hybrid inverter is limited by this setting value.

3. If the values are set as described above, the situations are as follows:

Under off-grid mode, when the Battery $SOC \le 80\%$, the GEN port function will be enabled and Inverter Input will be ON. When the Battery $SOC \ge 100\%$, the GEN port function will be disabled and Inverter Input will be OFF. When the battery charge power lower than the grid-tied inverter output power, the hybrid inverter will increase the output frequency to maximum 70Hz. Then the grid-tied inverter will work in limited power mode.


Under on-grid mode, the grid-tied inverter works as normal regardless of battery capacity.

Logic Diagram of Enable/Disable GEN Port Function

5 Other

In Other page, options including Parallel mode, Buzzer ON, Support Normal Load are listed. Enable them when necessary.

8. Maintenance

Before maintaining and commissioning inverter and its peripheral distribution unit, switch off all the charged terminals of the inverter and wait at least $10\,$ minutes after the inverter is powered off.

8.1 Routine Maintenance

Items	Check Content	Maintain Content	Maintenance Interval
Inverter output status	Statistically maintain the status of electrical yield, and remotely monitor its abnormal status.	N/A	Weekly
Inverter cleaning	Check periodically that the heat sink is free from dust and blockage.	Clean periodically the heat sink.	Yearly
Inverter running status	Check that the inverter is not damaged or deformed. Check for normal sound emitted during inverter operation. Check and ensure that all inverter communications are running well.	If there is any abnormal phenomenon, replace the relevant parts.	Monthly
Inverter electrical connections	Check that all AC, DC and communication cables are securely connected; Check that PGND cables are securely connected; Check that all cables are intact and free from aging.	If there is any abnormal phenomenon, replace the cable or re-connect it.	Semiannually

8.2 Inverter Troubleshooting

When the inverter has an exception, its basic common warning and handling methods are shown below.

Code	Alarm Information	Suggestions
A0	Grid over voltage	1. If the alarm occurs occasionally, possibly the power grid
A1	Grid under voltage	voltage is abnormal temporarily, and no action is required. 2. If the alarm occurs repeatedly, contact the local power station. After receiving approval of the local power bureau,
А3	Grid over frequency	revise the electrical protection parameter settings on the inverter through the App. 3. If the alarm persists for a long time, check whether the AC
A4	Grid under frequency	circuit breaker /AC terminals is disconnected, or if the grid has a power outage.
A2	Grid absent	Wait till power is restored.
В0	PV over voltage	Check whether the maximum input voltage of a single PV string exceeds the MPPT working voltage. If yes, modify the number of PV module connection strings.
B1	PV insulation abnormal	Check the insulation resistance against the ground for the PV strings. If a short circuit has occurred, rectify the fault. If the insulation resistance against the ground is less than the default value in a rainy environment, set insulation resistance protection on the App.
B2	Leakage current abnormal	If the alarm occurs occasionally, the inverter can be automatically recovered to the normal operating status after the fault is rectified. If the alarm occurs repeatedly, contact your dealer for technical support.
В4	PV under voltage	If the alarm occurs occasionally, possibly the external circuits are abnormal accidentally. The inverter automatically recovers to the normal operating status after the fault is rectified. If the alarm occurs repeatedly or last a long time, check whether the insulation resistance against the ground of PV strings is too low.
СО	Internal power supply abnormal	If the alarm occurs occasionally, the inverter can be automatically restored, and no action is required. If the alarm occurs repeatedly, please contact the customer service.

C2	Inverter over dc-bias current	 If the alarm occurs occasionally, possibly the power grid voltage is abnormal temporarily, and no action is required. If the alarm occurs repeatedly, and the inverter fails to generate power, contact the customer service.
С3	Inverter relay abnormal	 If the alarm occurs occasionally, possibly the power grid voltage is abnormal temporarily, and no action is required. If the alarm occurs repeatedly, pls. refer to the suggestions or measures of Grid over voltage. If the inverter fails to generate power, contact the customer service center. If there is no abnormality on the grid side, the machine fault can be determined. (If you open the cover and find traces of damage to the relay, it can be concluded that the machine is faulty.) And pls. contact the customer service.
CN	Remote off	1. Local manual shutdown is performed in APP. 2. The monitor executed the remote shutdown instruction. 3. Remove the communication module and confirm whether the alarm disappears. If yes, replace the communication module. Otherwise, please contact the customer service.
C5	Inverter over temperature	1. If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. 2. If the alarm occurs repeatedly, please check whether the installation site has direct sunlight, bad ventilation, or high ambient temperature (such as installed on the parapet). Yet, if the ambient temperature is lower than 45° C and the heat dissipation and ventilation is good, please contact customer service.
C6	GFCI abnormal	I. If the alarm occurs occasionally, it could have been an occasional exception to the external wiring. The inverter can be automatically recovered. No action is required. If it occurs repeatedly or cannot be recovered for a long time, please contact customer service.
В7	PV string reverse	Check and modify the positive and negative polarity of the input string.
C8	Fan abnormal	If the alarm occurs occasionally, please restart the inverter. If it occurs repeatedly or cannot be recovered for a long time, check whether the external fan is blocked by other objects. Otherwise, Please contact customer service.
C9	Unbalance Dc-link voltage	If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required.
CA	Dc-link over voltage	If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service.

СВ	Internal communication error Software incompatibility	I. If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service.
CD	Internal storage error	I. If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required.
CE	Data inconsistency	If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service.
CF	Inverter abnormal	If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required.
CG	Boost abnormal	If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service.
CJ	Meter lost	1. Check the meter parameter settings 2. Check whether the communication address of the inverter is consistent with that of the electricity meter through local APP. 3. The communication line is connected incorrectly or in bad contact 4. electricity meter failure. 5. If exclude the above faults, the alarm continues to occur, please contact the customer service center.

		If the alarm occurs occasionally, the inverter can be automatically
		recovered and no action is required.
		2. Check whether the battery overvoltage protection value is improperly
D2 E	Battery over voltage	set.
		3. The battery is abnormal.
		4. If exclude the above, the alarm continues to occur, please contact
		customer service.
		eustomer service.
		If the alarm occurs occasionally, the inverter can be automatically
		recovered and no action is required.
		2. Check the communication line connection between BMS and inverter
		(lithium battery).
D3 E	Pattoniundorvoltago	3. The battery is empty or the battery voltage is lower than the SOC cut-
D3	Battery under voltage	off voltage.
		4. The battery undervoltage protection value is improperly set.
		5. The battery is abnormal.
		6. If exclude the above, the alarm continues to occur, please contact the
		customer service center.
		Check whether the battery parameters are correctly set.
		2. The battery is undervoltage.
	Battery discharger over current	3. Check whether a separate battery is loaded and the discharge current
D4 E		exceeds the battery specifications.
		4. The battery is abnormal.
		5. If exclude the above, and the alarm continues to occur, please
		contact customer service.
		If the alarm occurs repeatedly, please check whether the installation
D5 E	Battery over tempreture	site is in direct sunlight and whether the ambient temperature is too
		high (such as in a closed room).
		2. If the battery is abnormal, replace it with a new one
D6 E	Battery under tempreture	3. If exclude the above, and the alarm continues to occur, please
	,	contact the customer service center.
		1. Check whether the BACKUP voltage and frequency Settings are within
		the specified range
		2. Check whether the BACKUP port is overloaded
D7 E	BACKUP output voltage abnormal	3. When not connected to the power grid, check whether BACKUP
		output is normal
		4. If exclude the above, and the alarm continues to occur, please
		contact customer service.
		1. Check whether the battery is disconnected.
		2. Check whether the battery is well connected with the inverter.
		3. Confirm that the battery is compatible with the inverter. It is
ID8	Communication error	recommended to use CAN communication.
[(Inverter-BMS)	4. Check whether the communication cable or port between the battery
		and the inverter is faulty.
		5. If exclude the above, and the alarm continues to occur, please
		contact the customer service center.

D9	Internal communication loss (E-M)	Check whether the communication cables between BACKUP, electricity meter and inverter are well connected and whether the wiring is correct Check whether the communication distance is within the specified.	
DA	Internal communication loss (M-D)	range 3. Disconnect the external communication and restart the electricity meter and inverter. 4. If exclude the above, and the alarm continues to occur, please contact the customer service center.	
CU	Dcdc abnormal	1. If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. 2. If the alarm occurs repeatedly, please check: 1) Check whether the MC4 terminal on the PV side is securely connected. 2) Check whether the voltage at the PV side is open circuit, short circuit or ground to ground, etc. If exclude the above, and the alarm continues to occur, please contact the customer service center.	
СР	BACKUP over dc-bias voltage	I. If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. If the alarm occurs repeatedly, the inverter cannot work properly. Pls. contact the customer service center.	
DB	BACKUP short circuit	Check whether the live line and null line of BACKUP output are short-circuited. If it is confirmed that the output is not short-circuited or an alarm, please contact customer service to report for repair (after the troubleshooting of alarm problems, EPS switch needs to be manually turned on during normal use)	
DC	BACKUP over load	Disconnect the BACKUP load and check whether the alarm is lifted If the load is disconnected but the alarm still exists, please contact the customer service. (After the alarm is lifted, the BACKUP switch needs to be manually turned on for normal use.)	

9. Technical Specification

N. 11	51/IID 120	6KHB-130	71//HD 100	10KHB-210		
Model Efficiency	5KHB-130	0KHB-130	7K6HB-180	10KHB-210		
•		00	00%			
Max Efficiency (PV to AC)	98.0% 94.5%					
Max. Efficiency (BAT to AC)		94	.370			
Input (PV)		20	00/			
Max. PV Configuration	7.50037		0%	15 00000		
Max. PV Input Power	7,500W	9,000W	12,000W	15,000W		
Max. PV Voltage	600V					
Start-up Voltage	90V 70V-550V					
MPPT Operating Voltage Range	20071 10071			20077 40077		
MPPT Range(Full load)	200V~480V	200V~480V	200V~480V	200V~480V		
Max. Input Current per MPPT	30A/22A 40A/30A		30A/22A/22A			
Max. Short Current per MPPT			40A/30A/30A			
Nos. of MPPT	2		:	5		
nput /Output(BAT)						
Compatible Battery Type			n/Lead-acid			
Nominal Battery Voltage(Full load)		·	8V			
Battery Voltage Range	40V-64V					
Max. Charge/Discharge Current	210A/130A	210A/130A	210A/180A	210A/210A		
Max. Charge/Discharge Power	10,000W/5,000W	10,000W/6000W	10,000W/8000W	10000W/10000W		
Lithium Battery Charge Curve	ion to BMS					
Output (Grid)						
Nominal AC Output Power	5,000W	6,000W	7,600W	10,000W		
Max. AC Output Apparent Power	5,500VA	6,600VA	7,600VA	11,000VA		
Max. AC Output Power (PF=1)	5,500W	6,600W	7,600W	11000W		
Max. AC Output Current	26.5A	31.8A	36.6A	47.5A		
Nominal Voltage		120/240V(Split phas	e) / 208V(2/3 phase)			
Power Factor	>0.99@rated power (Adjustable 0.8LD~0.8LG)					
Nominal Grid Frequency		50/6	60 Hz			
Grid Frequency Range	45Hz-55Hz/55Hz-65Hz(Adjustable)					
THDI	<3% (Rated Power)					
Output (Back Up)						
Nominal Output Power	5,000W	6,000W	7,600W	10,000W		
Peak Power (1s)	10,000VA	12,000VA	15,200VA	20,000VA		
Nominal Output Voltage	, .		e) / 208V(2/3 phase)	,		
Nominal Output Frequency			/60Hz			
Frans fer Time			0ms			
THDV			0% R Load			
Paraelle	9,(They can form the Three phase model)					
Protection		, ,	, ,			
Protection Category		Cla	ss I			
Anti-islanding Protection		YES				
AC Overcurrent Protection	YES					
AC Short Circuit Protection			ES			
DC/AC Overvoltage Protection						
SPD	DC Type II, AC Type III DC Type II , AC Type II					
Insulation Resistance Detection		• • •	ES			
AFCI			ES ES			
RSD			ems Sunspec)			
Generator			ES			
Generator		Y	Lo			
		25 6000 6	15°C domting			
Operating Temperature Range		-25~60°C (>45°C derating)				
Max.Operation Altitude	2000m					
Ingress Protection Degree	IP65/NEMA 3R					
Relative Humidity	0~100%, non-condensing Fan Cooling					

Model	5KHB-130	6KHB-130	7K6HB-180	10KHB-210	
HMI & COM					
Display	Bluetooth & APP + LED, LCD (optional)				
Communication interface	CAN/RS485(for BMS), DRM/RS485(for meter), RS485				
Communication interface	Optional:WiFi/LAN				
Mechanical					
Diamensions W x H x D	16.5*31.5*9.4 inch (420*800*240mm)				
Weight	40Kg/88lb				
DC switch	Yes				
PV Connection	Terminals				
Certification					
Grid	UL 1741SB, IEEE 1547:2018, HECO SRD				
Safty	UL 1741/CSA C22.2/UL 1699B				
Overvoltage Cat.	DC input : OVC II , AC output : OVC IV				
EMC	FCC Part 15 Class B				
Warranty	5 Years				

Remarks:

• Specifications are subject to change without advance notice.